A Numerical Characterization of Gorenstein Complexes

نویسنده

  • Takayuki Hibi
چکیده

Let V be a finite set, called the vertex set, and let .1 be a simplicial complex on V. Thus .1 is a collection of subsets of V such that (i) {x} EL1 for any x E V, and (ii) a E .1, 'r c a imply 'r E L1. An element a of .1 is called an i-face if #( a) = i + 1. Here, #( a) is the cardinality of a as a set. The positive integer dim .1: = max{ #( a) 1; a E L1} is called the dimension of .1. Let v = #(V) and d = dim .1 + 1. Write /; = /;(.1) for the number of i-faces of .1. Thus, in particular, fo = v. The vector f = f(L1) = (fo,/t, ... ,fd-l) is called the f-vector of .1. In terms of the f-vector, letting f-l = 1, define

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

THE FLAG f-VECTORS OF GORENSTEIN* ORDER COMPLEXES OF DIMENSION 3

We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f -vectors of Gorenstein* order complexes of dimension 3. As a corollary, we characterize the f -vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization rise a speculated intimate connection between the f -vectors of flag homology spheres and the f -vectors of Gorenstein* order comp...

متن کامل

THE FLAG f - VECTORS OF GORENSTEIN * ORDER COMPLEXES OF DIMENSION 3 3 ( b ) The vector ( 1 , x , y ) is

We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f -vectors of Gorenstein* order complexes of dimension 3. As a corollary, we characterize the f -vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization rise a speculated intimate connection between the f -vectors of flag homology spheres and the f -vectors of Gorenstein* order comp...

متن کامل

Gorenstein Injective Dimensions and Cohen-Macaulayness

Let (R,m) be a commutative noetherian local ring. In this paper we investigate the existence of a finitely generated R-module of finite Gorenstein dimension when R is Cohen-Macaulay. We study the Gorenstein injective dimension of local cohomology of complexes and next we show that if R is a non-Artinian Cohen-Macaulay ring, which does not have the minimal multiplicity, then R has a finite gener...

متن کامل

Homotopy category of projective complexes and complexes of Gorenstein projective modules

Let R be a ring with identity and C(R) denote the category of complexes of R-modules. In this paper we study the homotopy categories arising from projective (resp. injective) complexes as well as Gorenstein projective (resp. Gorenstein injective) modules. We show that the homotopy category of projective complexes over R, denoted K(Prj C(R)), is always well generated and is compactly generated p...

متن کامل

A Brief Introduction to Gorenstein Projective Modules

Since Eilenberg and Moore [EM], the relative homological algebra, especially the Gorenstein homological algebra ([EJ2]), has been developed to an advanced level. The analogues for the basic notion, such as projective, injective, flat, and free modules, are respectively the Gorenstein projective, the Gorenstein injective, the Gorenstein flat, and the strongly Gorenstein projective modules. One c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 11  شماره 

صفحات  -

تاریخ انتشار 1990